Elastic Energy - Elastic Potential Energy in Mechanical Systems

Elastic Potential Energy in Mechanical Systems

Components of mechanical systems will store elastic potential energy if they are deformed when forces are applied to the system. Energy is transferred to an object (i.e. work is done on it) any time a force external to it displaces or deforms the object. The quantity of energy transferred by work to the object is computed as the vector dot product of the force and the displacement of the object. As forces are applied to the system they are distributed internally to its component parts. While some of the energy transferred can end up stored as kinetic energy of acquired velocity, the deformation of the shape of component objects results in stored elastic energy.

A prototypical elastic component is a coiled spring. The linear elastic performance of a spring is parametrized by a constant of proportionality, called the spring constant. This constant is usually denoted as k (see also Hooke's Law) and depends on the geometry, cross sectional area, undeformed length and nature of the material from which the coil is fashioned. Within a certain range of deformation, k remains constant and is defined as the negative ratio of displacement to the magnitude of the restoring force produced by the spring at that displacement.

Note that L, the deformed length, can be larger or smaller than Lo, the undeformed length, so to keep k positive, Fr must be given as a vector component of the restoring force whose sign is negative for L>Lo and positive for L< Lo. If we abbreviate the displacement as

then Hooke's Law can be written in the usual form

.

Energy absorbed and stored in the spring can be derived using Hooke's Law to compute the restoring force as a measure of the applied force. This requires the assumption, sufficiently correct in most circumstances, that at a given moment, the magnitude of applied force, Fa is equal to the magnitude of the resultant restoring force, but its direction and thus sign is different. In other words, assume that at each point of the displacement Fa = k x, where Fa is the component of applied force along the x direction

For each infinitesimal displacement dx, the applied force is simply k x and the product of these is the infinitesimal transfer of energy into the spring dU. The total elastic energy placed into the spring from zero displacement to final length L is thus the integral

In the general case, elastic energy is given by the Helmholtz potential per unit of volume f as a function of the strain tensor components εij:

where λ and μ are the Lamé elastical coefficients. The connection between stress tensor components and strain tensor components is:

For a material of Young's modulus, Y (same as modulus of elasticity λ), cross sectional area, A0, initial length, l0, which is stretched by a length, :

where Ue is the elastic potential energy.

The elastic potential energy per unit volume is given by:

where is the strain in the material.

Read more about this topic:  Elastic Energy

Famous quotes containing the words elastic, potential, energy, mechanical and/or systems:

    We want some coat woven of elastic steel, stout as the first, and limber as the second. We want a ship in these billows we inhabit. An angular, dogmatic house would be rent to chips and splinters, in this storm of many elements. No, it must be tight, and fit to the form of man, to live at all; as a shell is the architecture of a house founded on the sea.
    Ralph Waldo Emerson (1803–1882)

    Children are potentially free and their life directly embodies nothing save potential freedom. Consequently they are not things and cannot be the property either of their parents or others.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    Parents find many different ways to work their way through the assertiveness of their two-year-olds, but seeing that assertiveness as positive energy being directed toward growth as a competent individual may open up some new possibilities.
    Fred Rogers (20th century)

    A man should have a farm or a mechanical craft for his culture. We must have a basis for our higher accomplishments, our delicate entertainments of poetry and philosophy, in the work of our hands.
    Ralph Waldo Emerson (1803–1882)

    What avails it that you are a Christian, if you are not purer than the heathen, if you deny yourself no more, if you are not more religious? I know of many systems of religion esteemed heathenish whose precepts fill the reader with shame, and provoke him to new endeavors, though it be to the performance of rites merely.
    Henry David Thoreau (1817–1862)