Basic Definitions
A dynamical system is a manifold M called the phase (or state) space endowed with a family of smooth evolution functions Φt that for any element of t ∈ T, the time, map a point of the phase space back into the phase space. The notion of smoothness changes with applications and the type of manifold. There are several choices for the set T. When T is taken to be the reals, the dynamical system is called a flow; and if T is restricted to the non-negative reals, then the dynamical system is a semi-flow. When T is taken to be the integers, it is a cascade or a map; and the restriction to the non-negative integers is a semi-cascade.
Read more about this topic: Dynamical System
Famous quotes containing the words basic and/or definitions:
“The universal moments of child rearing are in fact nothing less than a confrontation with the most basic problems of living in society: a facing through ones children of all the conflicts inherent in human relationships, a clarification of issues that were unresolved in ones own growing up. The experience of child rearing not only can strengthen one as an individual but also presents the opportunity to shape human relationships of the future.”
—Elaine Heffner (20th century)
“What I do not like about our definitions of genius is that there is in them nothing of the day of judgment, nothing of resounding through eternity and nothing of the footsteps of the Almighty.”
—G.C. (Georg Christoph)