Dynamical systems theory is an area of mathematics used to describe the behavior of complex dynamical systems, usually by employing differential equations or difference equations. When differential equations are employed, the theory is called continuous dynamical systems. When difference equations are employed, the theory is called discrete dynamical systems. When the time variable runs over a set which is discrete over some intervals and continuous over other intervals or is any arbitrary time-set such as a cantor set then one gets dynamic equations on time scales. Some situations may also be modelled by mixed operators such as differential-difference equations.
This theory deals with the long-term qualitative behavior of dynamical systems, and the studies of the solutions to the equations of motion of systems that are primarily mechanical in nature; although this includes both planetary orbits as well as the behaviour of electronic circuits and the solutions to partial differential equations that arise in biology. Much of modern research is focused on the study of chaotic systems.
This field of study is also called just Dynamical systems, Systems theory or longer as Mathematical Dynamical Systems Theory and the Mathematical theory of dynamical systems.
Famous quotes containing the words systems and/or theory:
“What avails it that you are a Christian, if you are not purer than the heathen, if you deny yourself no more, if you are not more religious? I know of many systems of religion esteemed heathenish whose precepts fill the reader with shame, and provoke him to new endeavors, though it be to the performance of rites merely.”
—Henry David Thoreau (18171862)
“There never comes a point where a theory can be said to be true. The most that one can claim for any theory is that it has shared the successes of all its rivals and that it has passed at least one test which they have failed.”
—A.J. (Alfred Jules)