Division Ring - Relation To Fields and Linear Algebra

Relation To Fields and Linear Algebra

All fields are division rings; more interesting examples are the non-commutative division rings. The best known example is the ring of quaternions H. If we allow only rational instead of real coefficients in the constructions of the quaternions, we obtain another division ring. In general, if R is a ring and S is a simple module over R, then, by Schur's lemma, the endomorphism ring of S is a division ring; every division ring arises in this fashion from some simple module.

Much of linear algebra may be formulated, and remains correct, for (left) modules over division rings instead of vector spaces over fields. Every module over a division ring has a basis; linear maps between finite-dimensional modules over a division ring can be described by matrices, and the Gaussian elimination algorithm remains applicable. Differences between linear algebra over fields and skew fields occur whenever the order of the factors in a product matters. For example, the proof that the column rank of a matrix over a field equals its row rank yields for matrices over division rings only that the left column rank equals its right row rank: it does not make sense to speak about the rank of a matrix over a division ring.

The center of a division ring is commutative and therefore a field. Every division ring is therefore a division algebra over its center. Division rings can be roughly classified according to whether or not they are finite-dimensional or infinite-dimensional over their centers. The former are called centrally finite and the latter centrally infinite. Every field is, of course, one-dimensional over its center. The quaternion ring forms a 4-dimensional algebra over its center, which is isomorphic to the real numbers.

Read more about this topic:  Division Ring

Famous quotes containing the words relation to, relation, fields and/or algebra:

    Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.
    Honoré De Balzac (1799–1850)

    The problem of the twentieth century is the problem of the color-line—the relation of the darker to the lighter races of men in Asia and Africa, in America and the islands of the sea. It was a phase of this problem that caused the Civil War.
    —W.E.B. (William Edward Burghardt)

    I don’t know why I ever come in here. The flies get the best of everything.
    Otis Criblecoblis, U.S. screenwriter. W.C. Fields (W.C. Fields)

    Poetry has become the higher algebra of metaphors.
    José Ortega Y Gasset (1883–1955)