Division Ring - Relation To Fields and Linear Algebra

Relation To Fields and Linear Algebra

All fields are division rings; more interesting examples are the non-commutative division rings. The best known example is the ring of quaternions H. If we allow only rational instead of real coefficients in the constructions of the quaternions, we obtain another division ring. In general, if R is a ring and S is a simple module over R, then, by Schur's lemma, the endomorphism ring of S is a division ring; every division ring arises in this fashion from some simple module.

Much of linear algebra may be formulated, and remains correct, for (left) modules over division rings instead of vector spaces over fields. Every module over a division ring has a basis; linear maps between finite-dimensional modules over a division ring can be described by matrices, and the Gaussian elimination algorithm remains applicable. Differences between linear algebra over fields and skew fields occur whenever the order of the factors in a product matters. For example, the proof that the column rank of a matrix over a field equals its row rank yields for matrices over division rings only that the left column rank equals its right row rank: it does not make sense to speak about the rank of a matrix over a division ring.

The center of a division ring is commutative and therefore a field. Every division ring is therefore a division algebra over its center. Division rings can be roughly classified according to whether or not they are finite-dimensional or infinite-dimensional over their centers. The former are called centrally finite and the latter centrally infinite. Every field is, of course, one-dimensional over its center. The quaternion ring forms a 4-dimensional algebra over its center, which is isomorphic to the real numbers.

Read more about this topic:  Division Ring

Famous quotes containing the words relation to, relation, fields and/or algebra:

    It would be disingenuous, however, not to point out that some things are considered as morally certain, that is, as having sufficient certainty for application to ordinary life, even though they may be uncertain in relation to the absolute power of God.
    René Descartes (1596–1650)

    The psychoanalysis of individual human beings, however, teaches us with quite special insistence that the god of each of them is formed in the likeness of his father, that his personal relation to God depends on his relation to his father in the flesh and oscillates and changes along with that relation, and that at bottom God is nothing other than an exalted father.
    Sigmund Freud (1856–1939)

    East and west on fields forgotten
    Bleach the bones of comrades slain,
    Lovely lads and dead and rotten;
    None that go return again.
    —A.E. (Alfred Edward)

    Poetry has become the higher algebra of metaphors.
    José Ortega Y Gasset (1883–1955)