Definition
An abelian group G is divisible if and only if, for every positive integer n and every g in G, there exists y in G such that ny = g. An equivalent condition is: for any positive integer n, nG = G, since the existence of y for every n and g implies that nG ⊇ G, and in the other direction nG ⊆ G is true for every group. A third equivalent condition is that an abelian group G is divisible if and only if G is an injective object in the category of abelian groups; for this reason, a divisible group is sometimes called an injective group.
An abelian group is p-divisible for a prime p if for every positive integer n and every g in G, there exists y in G such that pny = g. Equivalently, an abelian group is p-divisible if and only if pG = G.
Read more about this topic: Divisible Group
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)