Dirichlet Distribution - Probability Density Function

Probability Density Function

The Dirichlet distribution of order K ≥ 2 with parameters α1, ..., αK > 0 has a probability density function with respect to Lebesgue measure on the Euclidean space RK-1 given by

for all x1, ..., xK–1 > 0 satisfying x1 + ... + xK–1 < 1, and where xK = 1 – x1 – ... – xK–1. The density is zero outside this open (K − 1)-dimensional simplex.

The normalizing constant is the multinomial Beta function, which can be expressed in terms of the gamma function:

Read more about this topic:  Dirichlet Distribution

Famous quotes containing the words probability and/or function:

    Liberty is a blessing so inestimable, that, wherever there appears any probability of recovering it, a nation may willingly run many hazards, and ought not even to repine at the greatest effusion of blood or dissipation of treasure.
    David Hume (1711–1776)

    If the children and youth of a nation are afforded opportunity to develop their capacities to the fullest, if they are given the knowledge to understand the world and the wisdom to change it, then the prospects for the future are bright. In contrast, a society which neglects its children, however well it may function in other respects, risks eventual disorganization and demise.
    Urie Bronfenbrenner (b. 1917)