Multinomial Distribution

In probability theory, the multinomial distribution is a generalization of the binomial distribution.

The binomial distribution is the probability distribution of the number of "successes" in n independent Bernoulli trials, with the same probability of "success" on each trial. In a multinomial distribution, the analog of the Bernoulli distribution is the categorical distribution, where each trial results in exactly one of some fixed finite number k of possible outcomes, with probabilities p1, ..., pk (so that pi ≥ 0 for i = 1, ..., k and ), and there are n independent trials. Then let the random variables Xi indicate the number of times outcome number i was observed over the n trials. The vector X = (X1, ..., Xk) follows a multinomial distribution with parameters n and p, where p = (p1, ..., pk).

Note that, in some fields, such as natural language processing, the categorical and multinomial distributions are conflated, and it is common to speak of a "multinomial distribution" when a categorical distribution is actually meant. This stems from the fact that it is sometimes convenient to express the outcome of a categorical distribution as a "1-of-K" vector (a vector with one element containing a 1 and all other elements containing a 0) rather than as an integer in the range ; in this form, a categorical distribution is equivalent to a multinomial distribution over a single observation.

Read more about Multinomial Distribution:  Properties, Example, Sampling From A Multinomial Distribution, To Simulate A Multinomial Distribution, Related Distributions

Famous quotes containing the word distribution:

    In this distribution of functions, the scholar is the delegated intellect. In the right state, he is, Man Thinking. In the degenerate state, when the victim of society, he tends to become a mere thinker, or, still worse, the parrot of other men’s thinking.
    Ralph Waldo Emerson (1803–1882)