Direct Sum of Modules - Universal Property

Universal Property

In the language of category theory, the direct sum is a coproduct and hence a colimit in the category of left R-modules, which means that it is characterized by the following universal property. For every i in I, consider the natural embedding

which sends the elements of Mi to those functions which are zero for all arguments but i. If fi : MiM are arbitrary R-linear maps for every i, then there exists precisely one R-linear map

such that f o ji = fi for all i.

Dually, the direct product is the product.

Read more about this topic:  Direct Sum Of Modules

Famous quotes containing the words universal and/or property:

    Not because Socrates has said it, but because it is really in my nature, and perhaps a little more than it should be, I look upon all humans as my fellow-citizens, and would embrace a Pole as I would a Frenchman, subordinating this national tie to the common and universal one.
    Michel de Montaigne (1533–1592)

    The diversity in the faculties of men, from which the rights of property originate, is not less an insuperable obstacle to a uniformity of interests. The protection of these faculties is the first object of government.
    James Madison (1751–1836)