Equivalence of Direct Sums
The direct sum is not unique for a group; for example, in the Klein group, V4 = C2 × C2, we have that
- V4 = <(0,1)> + <(1,0)> and
- V4 = <(1,1)> + <(1,0)>.
However, it is the content of the Remak-Krull-Schmidt theorem that given a finite group G = ∑Ai = ∑Bj, where each Ai and each Bj is non-trivial and indecomposable, then the two sums are equivalent up to reordering and isomorphism of the subgroups involved.
The Remak-Krull-Schmidt theorem fails for infinite groups; so in the case of infinite G = H + K = L + M, even when all subgroups are non-trivial and indecomposable, we cannot then assume that H is isomorphic to either L or M.
Read more about this topic: Direct Sum Of Groups
Famous quotes containing the words direct and/or sums:
“One should never direct people towards happiness, because happiness too is an idol of the market-place. One should direct them towards mutual affection. A beast gnawing at its prey can be happy too, but only human beings can feel affection for each other, and this is the highest achievement they can aspire to.”
—Alexander Solzhenitsyn (b. 1918)
“At Timons villalet us pass a day,
Where all cry out,What sums are thrown away!”
—Alexander Pope (16881744)