The direct sum of abelian groups is a prototypical example of a direct sum. Given two abelian groups (A, ∗) and (B, ·), their direct sum A ⊕ B is the same as their direct product, i.e. its underlying set is the Cartesian product A × B with the group operation ○ given componentwise:
- (a1, b1) ○ (a2, b2) = (a1 ∗ a2, b1 · b2).
This definition generalizes to direct sums of finitely many abelian groups.
For an infinite family of abelian groups Ai for i ∈ I, the direct sum
is a proper subgroup of the direct product. It consists of the elements such that ai is the identity element of Ai for all but finitely many i.
In this case, the direct sum is indeed the coproduct in the category of abelian groups.
Read more about this topic: Direct Sum
Famous quotes containing the words direct, sum and/or groups:
“A temple, you know, was anciently an open place without a roof, whose walls served merely to shut out the world and direct the mind toward heaven; but a modern meeting-house shuts out the heavens, while it crowds the world into still closer quarters.”
—Henry David Thoreau (18171862)
“To sum up:
1. The cosmos is a gigantic fly-wheel making 10,000 revolutions a minute.
2. Man is a sick fly taking a dizzy ride on it.
3. Religion is the theory that the wheel was designed and set spinning to give him the ride.”
—H.L. (Henry Lewis)
“Writers and politicians are natural rivals. Both groups try to make the world in their own images; they fight for the same territory.”
—Salman Rushdie (b. 1947)