In mathematics, the circle group, denoted by T, is the multiplicative group of all complex numbers with absolute value 1, i.e., the unit circle in the complex plane.
The circle group forms a subgroup of C×, the multiplicative group of all nonzero complex numbers. Since C× is abelian, it follows that T is as well. The circle group is also the group U(1) of 1×1 unitary matrices; these act on the complex plane by rotation about the origin. The circle group can be parametrized by the angle θ of rotation by
This is the exponential map for the circle group.
The circle group plays a central role in Pontryagin duality, and in the theory of Lie groups.
The notation T for the circle group stems from the fact that Tn (the direct product of T with itself n times) is geometrically an n-torus. The circle group is then a 1-torus.
Read more about Circle Group: Elementary Introduction, Topological and Analytic Structure, Isomorphisms, Properties, Representations, Group Structure
Famous quotes containing the words circle and/or group:
“They will mark the stone-battlements
And the circle of them
With a bright stain.
They will cast out the dead
A sight for Priams queen to lament
And her frightened daughters.”
—Hilda Doolittle (18861961)
“The poet who speaks out of the deepest instincts of man will be heard. The poet who creates a myth beyond the power of man to realize is gagged at the peril of the group that binds him. He is the true revolutionary: he builds a new world.”
—Babette Deutsch (18951982)