Group Structure
In this section we will forget about the topological structure of the circle group and look only at its structure as an abstract group.
The circle group T is a divisible group. Its torsion subgroup is given by the set of all nth roots of unity for all n, and is isomorphic to Q/Z. The structure theorem for divisible groups tells us that T is isomorphic to the direct sum of Q/Z with a number of copies of Q. The number of copies of Q must be c (the cardinality of the continuum) in order for the cardinality of the direct sum to be correct. But the direct sum of c copies of Q is isomorphic to R, as R is a vector space of dimension c over Q. Thus
The isomorphism
can be proved in the same way, as C× is also a divisible abelian group whose torsion subgroup is the same as the torsion subgroup of T.
Read more about this topic: Circle Group
Famous quotes containing the words group and/or structure:
“No other group in America has so had their identity socialized out of existence as have black women.... When black people are talked about the focus tends to be on black men; and when women are talked about the focus tends to be on white women.”
—bell hooks (b. c. 1955)
“What is the structure of government that will best guard against the precipitate counsels and factious combinations for unjust purposes, without a sacrifice of the fundamental principle of republicanism?”
—James Madison (17511836)