Dicyclic Group - Definition

Definition

For each integer n > 1, the dicyclic group Dicn can be defined as the subgroup of the unit quaternions generated by

\begin{align} a & = e^{i\pi/n} = \cos\frac{\pi}{n} + i\sin\frac{\pi}{n} \\ x & = j \end{align}

More abstractly, one can define the dicyclic group Dicn as any group having the presentation

Some things to note which follow from this definition:

  • x4 = 1
  • x2ak = ak+n = akx2
  • if j = ±1, then xjak = a-kxj.
  • akx−1 = aknanx−1 = aknx2x−1 = aknx.

Thus, every element of Dicn can be uniquely written as akxj, where 0 ≤ k < 2n and j = 0 or 1. The multiplication rules are given by

It follows that Dicn has order 4n.

When n = 2, the dicyclic group is isomorphic to the quaternion group Q. More generally, when n is a power of 2, the dicyclic group is isomorphic to the generalized quaternion group.

Read more about this topic:  Dicyclic Group

Famous quotes containing the word definition:

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)