Dicyclic Group

In group theory, a dicyclic group (notation Dicn) is a member of a class of non-abelian groups of order 4n (n > 1). It is an extension of the cyclic group of order 2 by a cyclic group of order 2n, giving the name di-cyclic. In the notation of exact sequences of groups, this extension can be expressed as:

More generally, given any finite abelian group with an order-2 element, one can define a dicyclic group.

Read more about Dicyclic Group:  Definition, Properties, Binary Dihedral Group, Generalizations

Famous quotes containing the word group:

    If the Russians have gone too far in subjecting the child and his peer group to conformity to a single set of values imposed by the adult society, perhaps we have reached the point of diminishing returns in allowing excessive autonomy and in failing to utilize the constructive potential of the peer group in developing social responsibility and consideration for others.
    Urie Bronfenbrenner (b. 1917)