In group theory, a dicyclic group (notation Dicn) is a member of a class of non-abelian groups of order 4n (n > 1). It is an extension of the cyclic group of order 2 by a cyclic group of order 2n, giving the name di-cyclic. In the notation of exact sequences of groups, this extension can be expressed as:
More generally, given any finite abelian group with an order-2 element, one can define a dicyclic group.
Read more about Dicyclic Group: Definition, Properties, Binary Dihedral Group, Generalizations
Famous quotes containing the word group:
“It is not God that is worshipped but the group or authority that claims to speak in His name. Sin becomes disobedience to authority not violation of integrity.”
—Sarvepalli, Sir Radhakrishnan (18881975)
Related Phrases
Related Words