Special Values
Analogously to the Riemann zeta function, the values of the Dedekind zeta function at integers encode (at least conjecturally) important arithmetic data of the field K. For example, the analytic class number formula relates the residue at s = 1 to the class number h(K) of K, the regulator R(K) of K, the number w(K) of roots of unity in K, the absolute discriminant of K, and the number of real and complex places of K. Another example is at s = 0 where it has a zero whose order r is equal to the rank of the unit group of OK and the leading term is given by
Combining the functional equation and the fact that Γ(s) is zero at all integers less than or equal to zero yields that ζK(s) vanishes at all negative even integers. It even vanishes at all negative odd integers unless K is totally real (i.e. r2 = 0; e.g. Q or a real quadratic field). In the totally real case, Carl Ludwig Siegel showed that ζK(s) is a non-zero rational number at negative odd integers. Stephen Lichtenbaum conjectured specific values for these rational numbers in terms of the algebraic K-theory of K.
Read more about this topic: Dedekind Zeta Function
Famous quotes containing the words special and/or values:
“In England and America a beard usually means that its owner would rather be considered venerable than virile; on the continent of Europe it often means that its owner makes a special claim to virility.”
—Rebecca West (18921983)
“To be faced with what so-and-sos mother lets him do, or what the teacher said in class today or what all the kids are wearing is to be required to reexamine some part of our belief structure. Each time we rethink our values we reaffirm them or begin to change them. Seen in this way, parenthood affords us an exceptional opportunity for growth.”
—Ruth Davidson Bell (20th century)