Darboux Integral - Definition

Definition

A partition of an interval is a finite sequence of values xi such that

Each interval is called a subinterval of the partition. Let ƒ:→R be a bounded function, and let

be a partition of . Let

\begin{align} M_i = \sup_{x\in} f(x), \\ m_i = \inf_{x\in} f(x) .
\end{align}

The upper Darboux sum of ƒ with respect to P is

The lower Darboux sum of ƒ with respect to P is

The upper Darboux integral of ƒ is

The lower Darboux integral of ƒ is

If Uƒ = Lƒ, then we say that ƒ is Darboux-integrable and set

the common value of the upper and lower Darboux integrals.

Read more about this topic:  Darboux Integral

Famous quotes containing the word definition:

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)