Darboux Integral - Definition

Definition

A partition of an interval is a finite sequence of values xi such that

Each interval is called a subinterval of the partition. Let ƒ:→R be a bounded function, and let

be a partition of . Let

\begin{align} M_i = \sup_{x\in} f(x), \\ m_i = \inf_{x\in} f(x) .
\end{align}

The upper Darboux sum of ƒ with respect to P is

The lower Darboux sum of ƒ with respect to P is

The upper Darboux integral of ƒ is

The lower Darboux integral of ƒ is

If Uƒ = Lƒ, then we say that ƒ is Darboux-integrable and set

the common value of the upper and lower Darboux integrals.

Read more about this topic:  Darboux Integral

Famous quotes containing the word definition:

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)