Cysteine Protease - Catalytic Mechanism

Catalytic Mechanism

The first step in the reaction mechanism by which cysteine proteases catalyze the hydrolysis of peptide bonds is deprotonation of a thiol in the enzyme's active site by an adjacent amino acid with a basic side chain, usually a histidine residue. The next step is nucleophilic attack by the deprotonated cysteine's anionic sulfur on the substrate carbonyl carbon. In this step, a fragment of the substrate is released with an amine terminus, the histidine residue in the protease is restored to its deprotonated form, and a thioester intermediate linking the new carboxy-terminus of the substrate to the cysteine thiol is formed. Therefore they are also sometimes referred to as thiol proteases. The thioester bond is subsequently hydrolyzed to generate a carboxylic acid moiety on the remaining substrate fragment, while regenerating the free enzyme.

Read more about this topic:  Cysteine Protease

Famous quotes containing the word mechanism:

    I’ve never known a Philadelphian who wasn’t a downright “character;” possibly a defense mechanism resulting from the dullness of their native habitat.
    Anita Loos (1888–1981)