Relation With Regular Polygons
Gauss made early inroads in the theory of cyclotomic fields, in connection with the geometrical problem of constructing a regular n-gon with a compass and straightedge. His surprising result that had escaped his predecessors was that a regular heptadecagon (with 17 sides) could be so constructed. More generally, if p is a prime number, then a regular p-gon can be constructed if and only if p is a Fermat prime; in other words if is a power of 2.
For n = 3 and n = 6 primitive roots of unity admit a simple expression via square root of three, namely:
- ζ3 = √3 i − 1/2, ζ6 = √3 i + 1/2
Hence, both corresponding cyclotomic fields are identical to the quadratic field Q(√−3). In the case of ζ4 = i = √−1 the identity of Q(ζ4) to a quadratic field is even more obvious. This is not the case for n = 5 though, because expressing roots of unity requires square roots of quadratic integers, that means that roots belong to a second iteration of quadratic extension. The geometric problem for a general n can be reduced to the following question in Galois theory: can the nth cyclotomic field be built as a sequence of quadratic extensions?
Read more about this topic: Cyclotomic Field
Famous quotes containing the words relation with, relation and/or regular:
“There is a constant in the average American imagination and taste, for which the past must be preserved and celebrated in full-scale authentic copy; a philosophy of immortality as duplication. It dominates the relation with the self, with the past, not infrequently with the present, always with History and, even, with the European tradition.”
—Umberto Eco (b. 1932)
“The difference between objective and subjective extension is one of relation to a context solely.”
—William James (18421910)
“My attitude toward punctuation is that it ought to be as conventional as possible. The game of golf would lose a good deal if croquet mallets and billiard cues were allowed on the putting green. You ought to be able to show that you can do it a good deal better than anyone else with the regular tools before you have a license to bring in your own improvements.”
—Ernest Hemingway (18991961)