In number theory, a cyclotomic field is a number field obtained by adjoining a complex primitive root of unity to Q, the field of rational numbers. The n-th cyclotomic field Q(ζn) (with n > 2) is obtained by adjoining a primitive n-th root of unity ζn to the rational numbers.
The cyclotomic fields played a crucial role in the development of modern algebra and number theory because of their relation with Fermat's last theorem. It was in the process of his deep investigations of the arithmetic of these fields (for prime n) – and more precisely, because of the failure of unique factorization in their rings of integers – that Ernst Kummer first introduced the concept of an ideal number and proved his celebrated congruences.
Read more about Cyclotomic Field: Properties, Relation With Regular Polygons, Relation With Fermat's Last Theorem
Famous quotes containing the word field:
“I learn immediately from any speaker how much he has already lived, through the poverty or the splendor of his speech. Life lies behind us as the quarry from whence we get tiles and copestones for the masonry of today. This is the way to learn grammar. Colleges and books only copy the language which the field and the work-yard made.”
—Ralph Waldo Emerson (18031882)