Covering Group - Group Structure On A Covering Space

Group Structure On A Covering Space

Let H be a topological group and let G be a covering space of H. If G and H are both path-connected and locally path-connected, then for any choice of element e* in the fiber over eH, there exists a unique topological group structure on G, with e* as the identity, for which the covering map p : GH is a homomorphism.

The construction is as follows. Let a and b be elements of G and let f and g be paths in G starting at e* and terminating at a and b respectively. Define a path h : IH by h(t) = p(f(t))p(g(t)). By the path-lifting property of covering spaces there is a unique lift of h to G with initial point e*. The product ab is defined as the endpoint of this path. By construction we have p(ab) = p(a)p(b). One must show that this definition is independent of the choice of paths f and g, and also that the group operations are continuous.

The non-connected case is interesting and is studied in the papers by Taylor and by Brown-Mucuk cited below. Essentially there is an obstruction to the existence of a universal cover which is also a topological group such that the covering map is a morphism: this obstruction lies in the third cohomology group of the group of components of G with coefficients in the fundamental group of G at the identity.

Read more about this topic:  Covering Group

Famous quotes containing the words group, structure, covering and/or space:

    He hung out of the window a long while looking up and down the street. The world’s second metropolis. In the brick houses and the dingy lamplight and the voices of a group of boys kidding and quarreling on the steps of a house opposite, in the regular firm tread of a policeman, he felt a marching like soldiers, like a sidewheeler going up the Hudson under the Palisades, like an election parade, through long streets towards something tall white full of colonnades and stately. Metropolis.
    John Dos Passos (1896–1970)

    In the extent and proper structure of the Union, therefore, we behold a republican remedy for the diseases most incident to republican government.
    James Madison (1751–1836)

    You had to have seen the corpses lying there in front of the school—the men with their caps covering their faces—to know the meaning of class hatred and the spirit of revenge.
    Alfred Döblin (1878–1957)

    ... the movie woman’s world is designed to remind us that a woman may live in a mansion, an apartment, or a yurt, but it’s all the same thing because what she really lives in is the body of a woman, and that body is allowed to occupy space only according to the dictates of polite society.
    Jeanine Basinger (b. 1936)