Congruences of Groups, and Normal Subgroups and Ideals
In the particular case of groups, congruence relations can be described in elementary terms as follows: If G is a group (with identity element e and operation *) and ~ is a binary relation on G, then ~ is a congruence whenever:
- Given any element a of G, a ~ a (reflexivity);
- Given any elements a and b of G, if a ~ b, then b ~ a (symmetry);
- Given any elements a, b, and c of G, if a ~ b and b ~ c, then a ~ c (transitivity);
- Given any elements a, a', b, and b' of G, if a ~ a' and b ~ b', then a * b ~ a' * b' ;
- Given any elements a and a' of G, if a ~ a', then a−1 ~ a' −1 (this can actually be proven from the other four, so is strictly redundant).
Conditions 1, 2, and 3 say that ~ is an equivalence relation.
A congruence ~ is determined entirely by the set {a ∈ G : a ~ e} of those elements of G that are congruent to the identity element, and this set is a normal subgroup. Specifically, a ~ b if and only if b−1 * a ~ e. So instead of talking about congruences on groups, people usually speak in terms of normal subgroups of them; in fact, every congruence corresponds uniquely to some normal subgroup of G.
Read more about this topic: Congruence Relation
Famous quotes containing the words normal and/or ideals:
“The word career is a divisive word. Its a word that divides the normal life from business or professional life.”
—Grace Paley (b. 1922)
“The measure discriminates definitely against products which make up what has been universally considered a program of safe farming. The bill upholds as ideals of American farming the men who grow cotton, corn, rice, swine, tobacco, or wheat and nothing else. These are to be given special favors at the expense of the farmer who has toiled for years to build up a constructive farming enterprise to include a variety of crops and livestock.”
—Calvin Coolidge (18721933)