Congruence Lattice Problem - A Positive Representation Result For Distributive Semilattices

A Positive Representation Result For Distributive Semilattices

The proof of the negative solution for CLP shows that the problem of representing distributive semilattices by compact congruences of lattices already appears for congruence lattices of semilattices. The question whether the structure of partially ordered set would cause similar problems is answered by the following result.

Theorem (Wehrung 2008). For any distributive (∨,0)-semilattice S, there are a (∧,0)-semilattice P and a map μ : P × PS such that the following conditions hold:

(1) xy implies that μ(x,y)=0, for all x, y in P.

(2) μ(x,z) ≤ μ(x,y) ∨ μ(y,z), for all x, y, z in P.

(3) For all xy in P and all α, β in S such that μ(x,y) ≤ α ∨ β, there are a positive integer n and elements x=z0z1 ≥ ... ≥ z2n=y such that μ(zi,zi+1) ≤ α (resp., μ(zi,zi+1) ≤ β) whenever i < 2n is even (resp., odd).

(4) S is generated, as a join-semilattice, by all the elements of the form μ(x,0), for x in P.

Furthermore, if S has a largest element, then P can be assumed to be a lattice with a largest element.

It is not hard to verify that conditions (1)–(4) above imply the distributivity of S, so the result above gives a characterization of distributivity for (∨,0)-semilattices.

Read more about this topic:  Congruence Lattice Problem

Famous quotes containing the words positive and/or result:

    The oaks, how subtle and marine!
    Bearded, and all the layered light
    Above them swims; and thus the scene,
    Recessed, awaits the positive night.
    Robert Penn Warren (1905–1989)

    If you know the enemy and know yourself, you need not fear the result of a hundred battles. If you know yourself but not the enemy, for every victory gained you will also suffer a defeat. If you know neither the enemy nor yourself, you will succumb in every battle.
    Sun Tzu (6–5th century B.C.)