Complete Group
In mathematics, a group G is said to be complete if every automorphism of G is inner, and the group is a centerless group; that is, it has a trivial outer automorphism group and trivial center. Equivalently, a group is complete if the conjugation map (sending an element g to conjugation by g) is an isomorphism: 1-to-1 corresponds to centerless, onto corresponds to no outer automorphisms.
Read more about Complete Group: Examples, Properties, Extensions of Complete Groups
Famous quotes containing the words complete and/or group:
“The complete life, the perfect pattern, includes old age as well as youth and maturity. The beauty of the morning and the radiance of noon are good, but it would be a very silly person who drew the curtains and turned on the light in order to shut out the tranquillity of the evening. Old age has its pleasures, which, though different, are not less than the pleasures of youth.”
—W. Somerset Maugham (18741965)
“A little group of wilful men reflecting no opinion but their own have rendered the great Government of the United States helpless and contemptible.”
—Woodrow Wilson (18561924)