Constructing Commutative Rings
There are several ways to construct new rings out of given ones. The aim of such constructions is often to improve certain properties of the ring so as to make it more readily understandable. For example, an integral domain that is integrally closed in its field of fractions is called normal. This is a desirable property, for example any normal one-dimensional ring is necessarily regular. Rendering a ring normal is known as normalization.
Read more about this topic: Commutative Ring
Famous quotes containing the words constructing and/or rings:
“The very hope of experimental philosophy, its expectation of constructing the sciences into a true philosophy of nature, is based on induction, or, if you please, the a priori presumption, that physical causation is universal; that the constitution of nature is written in its actual manifestations, and needs only to be deciphered by experimental and inductive research; that it is not a latent invisible writing, to be brought out by the magic of mental anticipation or metaphysical mediation.”
—Chauncey Wright (18301875)
“Ah, Christ, I love you rings to the wild sky
And I must think a little of the past:
When I was ten I told a stinking lie
That got a black boy whipped....”
—Allen Tate (18991979)