Closure Operator - Closed Sets

Closed Sets

The closed sets with respect to a closure operator on S form a subset C of the power set P(S). Any intersection of sets in C is again in C. In other words, C is a complete meet-subsemilattice of P(S). Conversely, if CP(S) is closed under arbitrary intersections, then the function that associates to every subset X of S the smallest set YC such that XY is a closure operator.

A closure operator on a set is topological if and only if the set of closed sets is closed under finite unions, i.e., C is a meet-complete sublattice of P(S). Even for non-topological closure operators, C can be seen as having the structure of a lattice. (The join of two sets X,YP(S) being cl(X Y).) But then C is not a sublattice of the lattice P(S).

Given a finitary closure operator on a set, the closures of finite sets are exactly the compact elements of the set C of closed sets. It follows that C is an algebraic poset. Since C is also a lattice, it is often referred to as an algebraic lattice in this context. Conversely, if C is an algebraic poset, then the closure operator is finitary.

Read more about this topic:  Closure Operator

Famous quotes containing the words closed and/or sets:

    Because you live, O Christ,
    the spirit bird of hope is freed for flying,
    our cages of despair no longer keep us closed and life-denying.
    The stone has rolled away and death cannot imprison!
    O sing this Easter Day, for Jesus Christ has risen!
    Shirley Erena Murray (20th century)

    bars of that strange speech
    In which each sound sets out to seek each other,
    Murders its own father, marries its own mother,
    And ends as one grand transcendental vowel.
    Randall Jarrell (1914–1965)