Classification Of Finite Simple Groups
In mathematics, the classification of the finite simple groups is a theorem stating that every finite simple group belongs to one of four categories described below. These groups can be seen as the basic building blocks of all finite groups, in much the same way as the prime numbers are the basic building blocks of the natural numbers. The Jordan–Hölder theorem is a more precise way of stating this fact about finite groups.
The proof of the theorem consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004. Gorenstein (d.1992), Lyons, and Solomon are gradually publishing a simplified and revised version of the proof.
Read more about Classification Of Finite Simple Groups: Statement of The Classification Theorem, Overview of The Proof of The Classification Theorem, Second-generation Classification
Famous quotes containing the words finite, simple and/or groups:
“Any language is necessarily a finite system applied with different degrees of creativity to an infinite variety of situations, and most of the words and phrases we use are prefabricated in the sense that we dont coin new ones every time we speak.”
—David Lodge (b. 1935)
“The birth of the new constitutes a crisis, and its mastery calls for a crude and simple cast of mindthe mind of a fighterin which the virtues of tribal cohesion and fierceness and infantile credulity and malleability are paramount. Thus every new beginning recapitulates in some degree mans first beginning.”
—Eric Hoffer (19021983)
“Writers and politicians are natural rivals. Both groups try to make the world in their own images; they fight for the same territory.”
—Salman Rushdie (b. 1947)