Chow Ring

In algebraic geometry, the Chow ring (named after W. L. Chow) of an algebraic variety is an algebraic-geometric analogue of the cohomology ring of the variety considered as a topological space: its elements are formed out of actual subvarieties (so-called algebraic cycles) and its multiplicative structure is derived from the intersection of subvarieties. In fact, there is a natural map from one to the other which preserves the geometric notions which are common to the two (for example, Chern classes, intersection pairing, and a form of Poincaré duality). The advantage of the Chow ring is that its geometric definition allows it to be defined without reference to non-algebraic concepts; in addition, using algebraic techniques that are not available in the purely topological case, certain constructions that exist for both rings are simpler in the Chow ring.

There is also a bivariant version of the Chow theory (often referred to as the "operational Chow theory") introduced by William Fulton and Robert MacPherson.

Read more about Chow Ring:  Rational Equivalence, Definition of The Chow Ring, Geometric Interpretation, Functoriality, Cohomological Connections, Details of The Construction, Variants, History

Famous quotes containing the word ring:

    He will not idly dance at his work who has wood to cut and cord before nightfall in the short days of winter; but every stroke will be husbanded, and ring soberly through the wood; and so will the strokes of that scholar’s pen, which at evening record the story of the day, ring soberly, yet cheerily, on the ear of the reader, long after the echoes of his axe have died away.
    Henry David Thoreau (1817–1862)