Definition of The Chow Ring
It is part of the definition of rational equivalence that it only holds between subvarieties of equal dimension. For the purposes of constructing the Chow ring, we are interested in the codimension of the subvariety (that is, the difference between its dimension and that of X) since it makes the product work properly, so we define the groups Ak(X), for integers k satisfying, to be the abelian group of formal sums of subvarieties of X of codimension k modulo rational equivalence. The Chow ring itself is the direct sum of these, namely,
The ring structure is given by intersection of varieties: that is, if we have two classes in Ak(X) and Al(X) respectively, we define their product to be
This definition has a number of technicalities that will be discussed below; here it suffices to say that in the best case, which can be shown always to hold up to rational equivalence, this intersection has codimension k + l, hence lies in Ak + l(X). This makes the Chow ring into a graded ring. As a matter of notation, an element of the Chow ring is often called a "cycle".
Read more about this topic: Chow Ring
Famous quotes containing the words definition of the, definition of, definition and/or ring:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“When I received this [coronation] ring I solemnly bound myself in marriage to the realm; and it will be quite sufficient for the memorial of my name and for my glory, if, when I die, an inscription be engraved on a marble tomb, saying, Here lieth Elizabeth, which reigned a virgin, and died a virgin.”
—Elizabeth I (15331603)