Chow Ring - Rational Equivalence

Rational Equivalence

Further information: Equivalence relations on algebraic cycles

Before defining the Chow ring, we must define the notion of "rational equivalence", which as the name indicates, is an equivalence relation on a certain set. If X is an algebraic variety and Y, Z are two subvarieties, we say that Y and Z are rationally equivalent if there is a flat family parameterized by P1, contained in the product family P1 × X, two of whose fibers are Y and Z. In more classical language, we want a subvariety V of the product family two of whose fibers are Y and Z, and all of whose fibers are subvarieties of X with the same Hilbert polynomial. If we think of P1 as a line, then this notion is an algebraic analogue of cobordism.

Read more about this topic:  Chow Ring

Famous quotes containing the word rational:

    [I]n Great-Britain it is said that their constitution relies on the house of commons for honesty, and the lords for wisdom; which would be a rational reliance if honesty were to be bought with money, and if wisdom were hereditary.
    Thomas Jefferson (1743–1826)