In mathematics, Carmichael's totient function conjecture concerns the multiplicity of values of Euler's totient function φ(n), which counts the number of integers less than and coprime to n. It states that, for every n there is at least one other integer m ≠ n such that φ(m) = φ(n). Robert Carmichael first stated this conjecture 1907, but as a theorem rather than as a conjecture. However, his proof was faulty and in 1922 he retracted his claim and stated the conjecture as an open problem.
Read more about Carmichael's Totient Function Conjecture: Examples, Lower Bounds, Other Results
Famous quotes containing the words carmichael, function and/or conjecture:
“Each coming together of man and wife, even if they have been mated for many years, should be a fresh adventure; each winning should necessitate a fresh wooing.”
—Marie Carmichael Stopes (18801958)
“Philosophical questions are not by their nature insoluble. They are, indeed, radically different from scientific questions, because they concern the implications and other interrelations of ideas, not the order of physical events; their answers are interpretations instead of factual reports, and their function is to increase not our knowledge of nature, but our understanding of what we know.”
—Susanne K. Langer (18951985)
“There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.”
—Mark Twain [Samuel Langhorne Clemens] (18351910)