Other Results
Ford also proved that if there exists a counterexample to the Conjecture, then a positive fraction (that is infinitely many) of the integers are likewise counterexamples.
Although the conjecture is widely believed, Carl Pomerance gave a sufficient condition for an integer n to be a counterexample to the conjecture (Pomerance 1974). According to this condition, n is a counterexample if for every prime p such that p − 1 divides φ(n), p2 divides n. However Pomerance showed that the existence of such an integer is highly improbable. Essentially, one can show that if the first k primes p congruent to 1 (mod q) (where q is a prime) are all less than qk+1, then such an integer will be divisible by every prime and thus cannot exist. In any case, proving that Pomerance's counterexample does not exist is far from proving Carmichael's Conjecture. However if it exists then infinitely many counterexamples exist as asserted by Ford.
Another way of stating Carmichael's conjecture is that, if A(f) denotes the number of positive integers n for which φ(n) = f, then A(f) can never equal 1. Relatedly, Wacław Sierpiński conjectured that every positive integer other than 1 occurs as a value of A(f), a conjecture that was proven in 1999 by Kevin Ford.
Read more about this topic: Carmichael's Totient Function Conjecture
Famous quotes containing the word results:
“There is not a single rule, however plausible, and however firmly grounded in epistemology, that is not violated at some time or other. It becomes evident that such violations are not accidental events, they are not results of insufficient knowledge or of inattention which might have been avoided. On the contrary, we see that they are necessary for progress.”
—Paul Feyerabend (19241994)
“The peace conference must not adjourn without the establishment of some ordered system of international government, backed by power enough to give authority to its decrees. ... Unless a league something like this results at our peace conference, we shall merely drop back into armed hostility and international anarchy. The war will have been fought in vain ...”
—Virginia Crocheron Gildersleeve (18771965)