Carmichael's Totient Function Conjecture - Other Results

Other Results

Ford also proved that if there exists a counterexample to the Conjecture, then a positive fraction (that is infinitely many) of the integers are likewise counterexamples.

Although the conjecture is widely believed, Carl Pomerance gave a sufficient condition for an integer n to be a counterexample to the conjecture (Pomerance 1974). According to this condition, n is a counterexample if for every prime p such that p − 1 divides φ(n), p2 divides n. However Pomerance showed that the existence of such an integer is highly improbable. Essentially, one can show that if the first k primes p congruent to 1 (mod q) (where q is a prime) are all less than qk+1, then such an integer will be divisible by every prime and thus cannot exist. In any case, proving that Pomerance's counterexample does not exist is far from proving Carmichael's Conjecture. However if it exists then infinitely many counterexamples exist as asserted by Ford.

Another way of stating Carmichael's conjecture is that, if A(f) denotes the number of positive integers n for which φ(n) = f, then A(f) can never equal 1. Relatedly, Wacław Sierpiński conjectured that every positive integer other than 1 occurs as a value of A(f), a conjecture that was proven in 1999 by Kevin Ford.

Read more about this topic:  Carmichael's Totient Function Conjecture

Famous quotes containing the word results:

    For every life and every act
    Consequence of good and evil can be shown
    And as in time results of many deeds are blended
    So good and evil in the end become confounded.
    —T.S. (Thomas Stearns)

    ... dependence upon material possessions inevitably results in the destruction of human character.
    Agnes E. Meyer (1887–1970)