Cantor Set

In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of remarkable and deep properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883.

Through consideration of it, Cantor and others helped lay the foundations of modern general topology. Although Cantor himself defined the set in a general, abstract way, the most common modern construction is the Cantor ternary set, built by removing the middle thirds of a line segment. Cantor himself only mentioned the ternary construction in passing, as an example of a more general idea, that of a perfect set that is nowhere dense.

Read more about Cantor Set:  Construction and Formula of The Ternary Set, Composition, Historical Remarks

Famous quotes containing the word set:

    There are twenty ways of going to a point, and one is the shortest; but set out at once on one. A man who has that presence of mind which can bring to him on the instant all he knows, is worth for action a dozen men who know as much, but can only bring it to light slowly.
    Ralph Waldo Emerson (1803–1882)