Volterra's Function

In mathematics, Volterra's function, named for Vito Volterra, is a real-valued function V defined on the real line R with the following curious combination of properties:

  • V is differentiable everywhere
  • The derivative V ′ is bounded everywhere
  • The derivative is not Riemann-integrable.

Read more about Volterra's Function:  Definition and Construction, Further Properties

Famous quotes containing the word function:

    Advocating the mere tolerance of difference between women is the grossest reformism. It is a total denial of the creative function of difference in our lives. Difference must be not merely tolerated, but seen as a fund of necessary polarities between which our creativity can spark like a dialectic.
    Audre Lorde (1934–1992)