In mathematics, Volterra's function, named for Vito Volterra, is a real-valued function V defined on the real line R with the following curious combination of properties:
- V is differentiable everywhere
- The derivative V ′ is bounded everywhere
- The derivative is not Riemann-integrable.
Read more about Volterra's Function: Definition and Construction, Further Properties
Famous quotes containing the word function:
“Advocating the mere tolerance of difference between women is the grossest reformism. It is a total denial of the creative function of difference in our lives. Difference must be not merely tolerated, but seen as a fund of necessary polarities between which our creativity can spark like a dialectic.”
—Audre Lorde (19341992)