Bundle Maps Over A Common Base
Let πE:E→ M and πF:F→ M be fiber bundles over a space M. Then a bundle map from E to F over M is a continuous map φ:E→ F such that . That is, the diagram
should commute. Equivalently, for any point x in M, φ maps the fiber Ex = πE−1({x}) of E over x to the fiber Fx = πF−1({x}) of F over x.
Read more about this topic: Bundle Map
Famous quotes containing the words bundle, maps, common and/or base:
“There is Lowell, whos striving Parnassus to climb
With a whole bale of isms tied together with rhyme,
He might get on alone, spite of brambles and boulders,
But he cant with that bundle he has on his shoulders,
The top of the hill he will neer come nigh reaching
Till he learns the distinction twixt singing and preaching;”
—James Russell Lowell (18191891)
“And at least you know
That maps are of time, not place, so far as the army
Happens to be concernedthe reason being,
Is one which need not delay us.”
—Henry Reed (19141986)
“At the next town
the local princess was having a contest.
A common way for princesses to marry.
Fifty men had perished,
gargling the sea like soup.”
—Anne Sexton (19281974)
“All that are printed and bound are not books; they do not necessarily belong to letters, but are oftener to be ranked with the other luxuries and appendages of civilized life. Base wares are palmed off under a thousand disguises.”
—Henry David Thoreau (18171862)