Bump Function

In mathematics, a bump function is a function on a Euclidean space which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supported. The space of all bump functions on is denoted or . The dual space of this space endowed with a suitable topology is the space of distributions.

Read more about Bump Function:  Examples, Existence of Bump Functions, Properties and Uses

Famous quotes containing the words bump and/or function:

    Physics investigates the essential nature of the world, and biology describes a local bump. Psychology, human psychology, describes a bump on the bump.
    Willard Van Orman Quine (b. 1908)

    “... The state’s one function is to give.
    The bud must bloom till blowsy blown
    Its petals loosen and are strown;
    And that’s a fate it can’t evade
    Unless ‘twould rather wilt than fade.”
    Robert Frost (1874–1963)