The boron group is the series of elements in group 13 (IUPAC style) of the periodic table, comprising boron (B), aluminium (Al), gallium (Ga), indium (In), thallium (Tl), and ununtrium (Uut). The elements in the boron group are characterized by having three electrons in their outer energy levels (valence layers). These elements have also been referred to as earth metals and as triels.
Boron is classified as a metalloid while the rest, with the possible exception of ununtrium, are considered poor metals. Ununtrium has not yet been confirmed to be a poor metal and, due to relativistic effects, might not turn out to be one. Boron occurs sparsely, probably because bombardment by the subatomic particles produced from natural radioactivity disrupts its nuclei. Aluminium occurs widely on earth, and indeed is the third most abundant element in the Earth's crust (8.3%). Gallium is found in the earth with an abundance of 13 ppm. Indium is the 61st most abundant element in the earth's crust, and thallium is found in moderate amounts throughout the planet. Ununtrium is never found in nature and therefore is termed a synthetic element.
Several group-13 elements have biological roles in the ecosystem. Boron is a trace element in humans and is essential for some plants. Lack of boron can lead to stunted plant growth, while an excess can also cause harm by inhibiting growth. Aluminium has neither a biological role nor significant toxicity and is considered safe. Indium and gallium can stimulate metabolism; gallium is credited with the ability to bind itself to iron proteins. Thallium is highly toxic, interfering with the function of numerous vital enzymes, and has seen use as a pesticide.
Read more about Boron Group: Characteristics, Isotopes, History, Etymology, Applications, Biological Role, Toxicity
Famous quotes containing the word group:
“The trouble with tea is that originally it was quite a good drink. So a group of the most eminent British scientists put their heads together, and made complicated biological experiments to find a way of spoiling it. To the eternal glory of British science their labour bore fruit.”
—George Mikes (b. 1912)