Borel Functional Calculus - The General Functional Calculus

The General Functional Calculus

We can also define the functional calculus for not necessarily bounded Borel functions h; the result is an operator which in general fails to be bounded. Using the multiplication by a function f model of a self-adjoint operator given by the spectral theorem, this is multiplication by the composition of h with f.

Theorem. Let T be a self-adjoint operator on H, h a real-valued Borel function on R. There is a unique operator S such that

The operator S of the previous theorem is denoted h(T).

More generally, a Borel functional calculus also exists for (bounded) normal operators.

Read more about this topic:  Borel Functional Calculus

Famous quotes containing the words general, functional and/or calculus:

    We ought, says Kant, to become acquainted with the instrument, before we undertake the work for which it is to be employed; for if the instrument be insufficient, all our trouble will be spent in vain. The plausibility of this suggestion has won for it general assent and admiration.... But the examination can be only carried out by an act of knowledge. To examine this so-called instrument is the same as to know it.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    Well designed, fully functional infant. Provides someone to live for as well as another mouth to feed. Produces cooing, gurgling and other adorable sounds. May cause similar behavior in nearby adults. Cries when hungry, sleepy or just because. Hand Wash with warm water and mild soap, then pat dry with soft cloth and talc. Internal mechanisms are self-cleaning... Two Genders: Male. Female. Five Colors: White. Black. Yellow. Red. Camouflage.
    Alfred Gingold, U.S. humorist. Items From Our Catalogue, “Baby,” Avon Books (1982)

    I try to make a rough music, a dance of the mind, a calculus of the emotions, a driving beat of praise out of the pain and mystery that surround me and become me. My poems are meant to make your mind get up and shout.
    Judith Johnson Sherwin (b. 1936)