In mathematics, the continuous functional calculus of operator theory and C*-algebra theory allows applications of continuous functions to normal elements of a C*-algebra. More precisely,
Theorem. Let x be a normal element of a C*-algebra A with an identity element e; then there is a unique mapping π : f → f(x) defined for f a continuous function on the spectrum Sp(x) of x such that π is a unit-preserving morphism of C*-algebras such that π(1) = e and π(ι) = x, where ι denotes the function z → z on Sp(x).
The proof of this fact is almost immediate from the Gelfand representation: it suffices to assume A is the C*-algebra of continuous functions on some compact space X and define
Uniqueness follows from application of the Stone-Weierstrass theorem.
In particular, this implies that bounded self-adjoint operators on a Hilbert space have a continuous functional calculus.
For the case of self-adjoint operators on a Hilbert space of more interest is the Borel functional calculus.
Famous quotes containing the words continuous, functional and/or calculus:
“I read the newspapers avidly. It is my one form of continuous fiction.”
—Aneurin Bevan (18971960)
“In short, the building becomes a theatrical demonstration of its functional ideal. In this romanticism, High-Tech architecture is, of course, no different in spiritif totally different in formfrom all the romantic architecture of the past.”
—Dan Cruickshank (b. 1949)
“I try to make a rough music, a dance of the mind, a calculus of the emotions, a driving beat of praise out of the pain and mystery that surround me and become me. My poems are meant to make your mind get up and shout.”
—Judith Johnson Sherwin (b. 1936)