Blown Flap - History

History

During the 1950s and 60s, fighter aircraft generally evolved towards smaller and smaller wing planforms in order to have low drag at high speeds. Compared to the fighters of a generation earlier, they had wing loadings about four times as high; for instance the Supermarine Spitfire had a wing loading of 24 lb/ft2 (117 kg/m2) and the Messerschmitt Bf 109 had the "very high" loading of 30 lb/ft2 (146 kg/m2), whereas the 1950s-era F-104 Starfighter had 111 lb/ft2 (542 kg/m2).

One serious downside to these higher wing loadings is at low speed, when there simply isn't enough wing left to provide lift to keep the plane flying. Even huge flaps could not offset this to any large degree, and as a result many aircraft landed at fairly high speeds, and were noted for accidents as a result.

The major reason flaps were not effective is that the airflow over the wing could only be "bent so much" before it stopped following the wing profile, a condition known as flow separation. Effectively, there is a limit to how much air the flaps can deflect overall. There are ways to improve this, through better flap design; modern airliners use complex multi-part flaps for instance. However, large flaps tend to add considerable complexity, and take up room on the outside of the wing, which makes them unsuitable for use on a fighter.

The concept was first tested on the experimental Hunting H.126. It reduced the stall speed to only 32 mph (51 km/h), a number most light aircraft cannot match. The first production aircraft with BLCS was the Lockheed F-104 Starfighter, where after prolonged development problems, it proved to be enormously useful in compensating for the Starfighter's tiny wing surface. It was shortly adopted for North American Aviation's A-5 Vigilante, the F-4 Phantom, the Blackburn Buccaneer and the ill-fated BAC TSR-2. On the TSR-2 it reduced the takeoff distance for this large and highly loaded aircraft from 6,000 feet (1,800 m) without the blowers, to about 1,600 feet (490 m) with them turned on.

In production aircraft, blown-flap systems were found to be a maintenance nightmare. They were continually breaking down due to clogging with dirt, and were generally unreliable. This made blown flaps practically useless as a landing aid on many aircraft. They were removed from later production runs of some aircraft.

Starting in the 1970s the lessons of air combat over Vietnam changed thinking considerably. Instead of aircraft designed for outright speed, general maneuverability and load capacity became more important in most designs. The result is an evolution back to larger planforms to provide more lift. For instance the F-16 has a wing loading of 78.5 lb/ft2 (383 kg/m2), and uses leading edge extensions to provide considerably more lift at higher angles of attack, including approach and landing. Given the problems in service and the better lift from the larger wings, blown flaps have generally disappeared. More recently designed fighter aircraft achieve the same improved low-speed characteristics using the technically more complex swing-wing design.

In the 1970s new methods of constructing blown flaps were designed, with the original system becoming known as internal blowing. Two systems of externally blown flaps were developed, both using the direct exhaust of wing-mounted engines on otherwise simple flaps. Typical flap designs are split near the engine such that they don't deflect the thrust; however, with sufficiently powered engines, the effect of the flaps being in the path of the exhaust can be tremendous. The Airbus A380, because of its massive size, is one of the few major commercial airliners to use externally blown flaps, which continue behind its engines.

Read more about this topic:  Blown Flap

Famous quotes containing the word history:

    A man will not need to study history to find out what is best for his own culture.
    Henry David Thoreau (1817–1862)

    When the coherence of the parts of a stone, or even that composition of parts which renders it extended; when these familiar objects, I say, are so inexplicable, and contain circumstances so repugnant and contradictory; with what assurance can we decide concerning the origin of worlds, or trace their history from eternity to eternity?
    David Hume (1711–1776)

    To history therefore I must refer for answer, in which it would be an unhappy passage indeed, which should shew by what fatal indulgence of subordinate views and passions, a contest for an atom had defeated well founded prospects of giving liberty to half the globe.
    Thomas Jefferson (1743–1826)