The Bernoulli and Euler Numbers
The Bernoulli numbers are given by An alternate convention defines the Bernoulli numbers as . This definition gives Bn = −nζ(1 − n) where for n = 0 and n = 1 the expression −nζ(1 − n) is to be understood as limx → n −xζ(1 − x). The two conventions differ only for n = 1 since B1(1) = 1/2 = −B1(0).
The Euler numbers are given by
Read more about this topic: Bernoulli Polynomials
Famous quotes containing the word numbers:
“The principle of majority rule is the mildest form in which the force of numbers can be exercised. It is a pacific substitute for civil war in which the opposing armies are counted and the victory is awarded to the larger before any blood is shed. Except in the sacred tests of democracy and in the incantations of the orators, we hardly take the trouble to pretend that the rule of the majority is not at bottom a rule of force.”
—Walter Lippmann (18891974)