Bernoulli Polynomials - Fourier Series

Fourier Series

The Fourier series of the Bernoulli polynomials is also a Dirichlet series, given by the expansion

Note the simple large n limit to suitably scaled trigonometric functions.

This is a special case of the analogous form for the Hurwitz zeta function

B_n(x) = -\Gamma(n+1) \sum_{k=1}^\infty
\frac{ \exp (2\pi ikx) + e^{i\pi n} \exp (2\pi ik(1-x)) } { (2\pi ik)^n }.

This expansion is valid only for 0 ≤ x ≤ 1 when n ≥ 2 and is valid for 0 < x < 1 when n = 1.

The Fourier series of the Euler polynomials may also be calculated. Defining the functions

C_\nu(x) = \sum_{k=0}^\infty
\frac {\cos((2k+1)\pi x)} {(2k+1)^\nu}

and

S_\nu(x) = \sum_{k=0}^\infty
\frac {\sin((2k+1)\pi x)} {(2k+1)^\nu}

for, the Euler polynomial has the Fourier series

C_{2n}(x) = \frac{(-1)^n}{4(2n-1)!}
\pi^{2n} E_{2n-1} (x)

and

S_{2n+1}(x) = \frac{(-1)^n}{4(2n)!}
\pi^{2n+1} E_{2n} (x).

Note that the and are odd and even, respectively:

and

They are related to the Legendre chi function as

and

Read more about this topic:  Bernoulli Polynomials

Famous quotes containing the word series:

    The woman’s world ... is shown as a series of limited spaces, with the woman struggling to get free of them. The struggle is what the film is about; what is struggled against is the limited space itself. Consequently, to make its point, the film has to deny itself and suggest it was the struggle that was wrong, not the space.
    Jeanine Basinger (b. 1936)