# Area - Formal Definition

Formal Definition

See also: Jordan measure

An approach to defining what is meant by "area" is through axioms. "Area" can be defined as a function from a collection M of special kind of plane figures (termed measurable sets) to the set of real numbers which satisfies the following properties:

• For all S in M, a(S) ≥ 0.
• If S and T are in M then so are ST and ST, and also a(ST) = a(S) + a(T) − a(ST).
• If S and T are in M with ST then TS is in M and a(TS) = a(T) − a(S).
• If a set S is in M and S is congruent to T then T is also in M and a(S) = a(T).
• Every rectangle R is in M. If the rectangle has length h and breadth k then a(R) = hk.
• Let Q be a set enclosed between two step regions S and T. A step region is formed from a finite union of adjacent rectangles resting on a common base, i.e. SQT. If there is a unique number c such that a(S) ≤ c ≤ a(T) for all such step regions S and T, then a(Q) = c.

It can be proved that such an area function actually exists.

Read more about this topic:  Area

### Famous quotes containing the words formal and/or definition:

Then the justice,
In fair round belly with good capon lined,
With eyes severe and beard of formal cut,
Full of wise saws and modern instances;
And so he plays his part.
William Shakespeare (1564–1616)

Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
Nadine Gordimer (b. 1923)