Area - Formal Definition

Formal Definition

See also: Jordan measure

An approach to defining what is meant by "area" is through axioms. "Area" can be defined as a function from a collection M of special kind of plane figures (termed measurable sets) to the set of real numbers which satisfies the following properties:

  • For all S in M, a(S) ≥ 0.
  • If S and T are in M then so are ST and ST, and also a(ST) = a(S) + a(T) − a(ST).
  • If S and T are in M with ST then TS is in M and a(TS) = a(T) − a(S).
  • If a set S is in M and S is congruent to T then T is also in M and a(S) = a(T).
  • Every rectangle R is in M. If the rectangle has length h and breadth k then a(R) = hk.
  • Let Q be a set enclosed between two step regions S and T. A step region is formed from a finite union of adjacent rectangles resting on a common base, i.e. SQT. If there is a unique number c such that a(S) ≤ c ≤ a(T) for all such step regions S and T, then a(Q) = c.

It can be proved that such an area function actually exists.

Read more about this topic:  Area

Famous quotes containing the words formal and/or definition:

    I will not let him stir
    Till I have used the approvèd means I have,
    With wholesome syrups, drugs, and holy prayers,
    To make of him a formal man again.
    William Shakespeare (1564–1616)

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)