Definition For Normed Fields
The qualifier "Archimedean" is also formulated in the theory of rank one valued fields and normed spaces over rank one valued fields as follows. Let F be a field endowed with an absolute value function, i.e., a function which associates the real number 0 with the field element 0 and associates a positive real number with each non-zero and satisfies and . Then, F is said to be Archimedean if for any non-zero there exists a natural number n such that
Similarly, a normed space is Archimedean if a sum of terms, each equal to a non-zero vector, has norm greater than one for sufficiently large . A field with an absolute value or a normed space is either Archimedean or satisfies the stronger condition, referred to as the ultrametric triangle inequality,
-
-
- ,
-
respectively. A field or normed space satisfying the ultrametric triangle inequality is called non-Archimedean.
The concept of a non-Archimedean normed linear space was introduced by A. F. Monna.
Read more about this topic: Archimedean Property
Famous quotes containing the words definition and/or fields:
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)
“During the first World War women in the United States had a chance to try their capacities in wider fields of executive leadership in industry. Must we always wait for war to give us opportunity? And must the pendulum always swing back in the busy world of work and workers during times of peace?”
—Mary Barnett Gilson (1877?)