Amplitude - Formal Representation

Formal Representation

In this simple wave equation

x = A \sin(t - K) + b \ ,

A is the peak amplitude of the wave,
x is the oscillating variable,
t is time,
K and b are arbitrary constants representing time and displacement offsets respectively.

The units of the amplitude depend on the type of wave, but are always in the same units as the oscillating variable. A more general representation of the wave equation is more complex, but the role of amplitude remains analogous to this simple case.

For waves on a string, or in medium such as water, the amplitude is a displacement.

The amplitude of sound waves and audio signals (which relates to the volume) conventionally refers to the amplitude of the air pressure in the wave, but sometimes the amplitude of the displacement (movements of the air or the diaphragm of a speaker) is described. The logarithm of the amplitude squared is usually quoted in dB, so a null amplitude corresponds to −∞ dB. Loudness is related to amplitude and intensity and is one of most salient qualities of a sound, although in general sounds can be recognized independently of amplitude. The square of the amplitude is proportional to the intensity of the wave.

For electromagnetic radiation, the amplitude of a photon corresponds to the changes in the electric field of the wave. However radio signals may be carried by electromagnetic radiation; the intensity of the radiation (amplitude modulation) or the frequency of the radiation (frequency modulation) is oscillated and then the individual oscillations are varied (modulated) to produce the signal.

Read more about this topic:  Amplitude

Famous quotes containing the word formal:

    Good gentlemen, look fresh and merrily.
    Let not our looks put on our purposes,
    But bear it as our Roman actors do,
    With untired spirits and formal constancy.
    William Shakespeare (1564–1616)