Standing Wave Ratio

In telecommunications, standing wave ratio (SWR) is the ratio of the amplitude of a partial standing wave at an antinode (maximum) to the amplitude at an adjacent node (minimum), in an electrical transmission line.

The SWR is usually defined as a voltage ratio called the VSWR, (sometimes pronounced "viswar" ), for voltage standing wave ratio. For example, the VSWR value 1.2:1 denotes a maximum standing wave amplitude that is 1.2 times greater than the minimum standing wave value. It is also possible to define the SWR in terms of current, resulting in the ISWR, which has the same numerical value. The power standing wave ratio (PSWR) is defined as the square of the VSWR.

SWR is used as an efficiency measure for transmission lines, electrical cables that conduct radio frequency signals, used for purposes such as connecting radio transmitters and receivers with their antennas, and distributing cable television signals. A problem with transmission lines is that impedance mismatches in the cable tend to reflect the radio waves back toward the source end of the cable, preventing all the power from reaching the destination end. SWR measures the relative size of these reflections. An ideal transmission line would have an SWR of 1:1, with all the power reaching the destination and no reflected power. An infinite SWR represents complete reflection, with all the power reflected back down the cable. The SWR of a transmission line can be measured with an instrument called an SWR meter, and checking the SWR is a standard part of installing and maintaining transmission lines.

Read more about Standing Wave Ratio:  Relationship To The Reflection Coefficient, Further Analysis, Practical Implications of SWR, Implications of SWR On Medical Applications

Famous quotes containing the words standing, wave and/or ratio:

    Heaven froze above, severe; the clouds congeal,
    And through the crystal vault appeared the standing hail.
    Geoffrey Chaucer (1340?–1400)

    “Justice” was done, and the President of the Immortals, in Æschylean phrase, had ended his sport with Tess. And the d’Urberville knights and dames slept on in their tombs unknowing. The two speechless gazers bent themselves down to the earth, as if in prayer, and remained thus a long time, absolutely motionless: the flag continued to wave silently. As soon as they had strength they arose, joined hands again, and went on.
    The End
    Thomas Hardy (1840–1928)

    People are lucky and unlucky not according to what they get absolutely, but according to the ratio between what they get and what they have been led to expect.
    Samuel Butler (1835–1902)