Abstract Regular Polytopes
Formally, an abstract polytope is defined to be "regular" if its automorphism group acts transitively on the set of its flags. In particular, any two k-faces F, G of an n-polytope are "the same", i.e. that there is an automorphism which maps F to G. When an abstract polytope is regular, its automorphism group is isomorphic to a quotient of a Coxeter group.
All polytopes of rank ≤ 2 are regular. The most famous regular polyhedra are the five Platonic solids. The hemicube (shown) is also regular.
Informally, for each rank k, this means that there is no way to distinguish any k-face from any other - the faces must be identical, and must have identical neighbors, and so forth. For example, a cube is regular because all the faces are squares, each square's vertices are attached to three squares, and each of these squares is attached to identical arrangements of other faces, edges and vertices, and so on.
This condition alone is sufficient to ensure that any regular abstract polytope has isomorphic regular (n−1)-faces and isomorphic regular vertex figures.
This is a weaker condition than regularity for traditional polytopes, in that it refers to the (combinatorial) automorphism group, not the (geometric) symmetry group. For example, any abstract polygon is regular, since angles, edge-lengths, edge curvature, skewness etc. don't exist for abstract polytopes.
There are several other weaker concepts, some not yet fully standardised, such as semi-regular, quasi-regular, uniform, chiral, and Archimedean that apply to polytopes that have some, but not all of their faces equivalent in each rank.
Read more about this topic: Abstract Polytope
Famous quotes containing the words abstract and/or regular:
“The reader uses his eyes as well as or instead of his ears and is in every way encouraged to take a more abstract view of the language he sees. The written or printed sentence lends itself to structural analysis as the spoken does not because the readers eye can play back and forth over the words, giving him time to divide the sentence into visually appreciated parts and to reflect on the grammatical function.”
—J. David Bolter (b. 1951)
“My attitude toward punctuation is that it ought to be as conventional as possible. The game of golf would lose a good deal if croquet mallets and billiard cues were allowed on the putting green. You ought to be able to show that you can do it a good deal better than anyone else with the regular tools before you have a license to bring in your own improvements.”
—Ernest Hemingway (18991961)