Regular Polytope

In mathematics, a regular polytope is a polytope whose symmetry is transitive on its flags, thus giving it the highest degree of symmetry. All its elements or j-faces (for all 0 ≤ jn, where n is the dimension of the polytope) — cells, faces and so on — are also transitive on the symmetries of the polytope, and are regular polytopes of dimension ≤ n.

Regular polytopes are the generalized analog in any number of dimensions of regular polygons (for example, the square or the regular pentagon) and regular polyhedra (for example, the cube). The strong symmetry of the regular polytopes gives them an aesthetic quality that interests both non-mathematicians and mathematicians.

Classically, a regular polytope in n dimensions may be defined as having regular facets and regular vertex figures. These two conditions are sufficient to ensure that all faces are alike and all vertices are alike. Note, however, that this definition does not work for abstract polytopes.

A regular polytope can be represented by a Schläfli symbol of the form {a, b, c, ...., y, z}, with regular facets as {a, b, c, ..., y}, and regular vertex figures as {b, c, ..., y, z}.

Read more about Regular Polytope:  Classification and Description, Regular Polytopes in Nature

Famous quotes containing the word regular:

    This is the frost coming out of the ground; this is Spring. It precedes the green and flowery spring, as mythology precedes regular poetry. I know of nothing more purgative of winter fumes and indigestions. It convinces me that Earth is still in her swaddling-clothes, and stretches forth baby fingers on every side.
    Henry David Thoreau (1817–1862)