Turing Machine - Formal Definition

Formal Definition

Hopcroft and Ullman (1979, p. 148) formally define a (one-tape) Turing machine as a 7-tuple where

  • is a finite, non-empty set of states
  • is a finite, non-empty set of the tape alphabet/symbols
  • is the blank symbol (the only symbol allowed to occur on the tape infinitely often at any step during the computation)
  • is the set of input symbols
  • is the initial state
  • is the set of final or accepting states.
  • is a partial function called the transition function, where L is left shift, R is right shift. (A relatively uncommon variant allows "no shift", say N, as a third element of the latter set.)

Anything that operates according to these specifications is a Turing machine.

The 7-tuple for the 3-state busy beaver looks like this (see more about this busy beaver at Turing machine examples):

  • ("blank")
  • (the initial state)
  • see state-table below

Initially all tape cells are marked with 0.

State table for 3 state, 2 symbol busy beaver
Tape symbol Current state A Current state B Current state C
Write symbol Move tape Next state Write symbol Move tape Next state Write symbol Move tape Next state
0 1 R B 1 L A 1 L B
1 1 L C 1 R B 1 R HALT

Read more about this topic:  Turing Machine

Famous quotes containing the words formal and/or definition:

    The manifestation of poetry in external life is formal perfection. True sentiment grows within, and art must represent internal phenomena externally.
    Franz Grillparzer (1791–1872)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)