Sample Standard Deviation - Estimation - Unbiased Sample Standard Deviation

Unbiased Sample Standard Deviation

For unbiased estimation of standard deviation, there is no formula that works across all distributions, unlike for mean and variance. Instead, s is used as a basis, and is scaled by a correction factor to produce an unbiased estimate. For the normal distribution, an unbiased estimator is given by s/c4, where the correction factor (which depends on N) is given in terms of the Gamma function, and equals:

This arises because the sampling distribution of the sample standard deviation follows a (scaled) chi distribution, and the correction factor is the mean of the chi distribution.

An approximation is given by replacing N − 1 with N − 1.5, yielding:

 \hat\sigma = \sqrt{ \frac{1}{N - 1.5} \sum_{i=1}^n (x_i - \bar{x})^2 },

The error in this approximation decays quadratically (as 1/N2), and it is suited for all but the smallest samples or highest precision: for n = 3 the bias is equal to 1.3%, and for n = 9 the bias is already less than 0.1%.

For other distributions, the correct formula depends on the distribution, but a rule of thumb is to use the further refinement of the approximation:

 \hat\sigma = \sqrt{ \frac{1}{n - 1.5 - \tfrac14 \gamma_2} \sum_{i=1}^n (x_i - \bar{x})^2 },

where γ2 denotes the population excess kurtosis. The excess kurtosis may be either known beforehand for certain distributions, or estimated from the data.

Read more about this topic:  Sample Standard Deviation, Estimation

Famous quotes containing the words unbiased, sample and/or standard:

    Where there is no exaggeration there is no love, and where there is no love there is no understanding. It is only about things that do not interest one, that one can give a really unbiased opinion; and this is no doubt the reason why an unbiased opinion is always valueless.
    Oscar Wilde (1854–1900)

    All that a city will ever allow you is an angle on it—an oblique, indirect sample of what it contains, or what passes through it; a point of view.
    Peter Conrad (b. 1948)

    If the Revolution has the right to destroy bridges and art monuments whenever necessary, it will stop still less from laying its hand on any tendency in art which, no matter how great its achievement in form, threatens to disintegrate the revolutionary environment or to arouse the internal forces of the Revolution, that is, the proletariat, the peasantry and the intelligentsia, to a hostile opposition to one another. Our standard is, clearly, political, imperative and intolerant.
    Leon Trotsky (1879–1940)