Probability Mass Function

In probability theory and statistics, a probability mass function (pmf) is a function that gives the probability that a discrete random variable is exactly equal to some value. The probability mass function is often the primary means of defining a discrete probability distribution, and such functions exist for either scalar or multivariate random variables, given that the distribution is discrete.

A probability mass function differs from a probability density function (p.d.f.) in that the latter is associated with continuous rather than discrete random variables; the values of the latter are not probabilities as such: a p.d.f. must be integrated over an interval to yield a probability.

Read more about Probability Mass Function:  Formal Definition, Examples

Famous quotes containing the words probability, mass and/or function:

    Crushed to earth and rising again is an author’s gymnastic. Once he fails to struggle to his feet and grab his pen, he will contemplate a fact he should never permit himself to face: that in all probability books have been written, are being written, will be written, better than anything he has done, is doing, or will do.
    Fannie Hurst (1889–1968)

    While this America settles in the mould of its vulgarity, heavily
    thickening to empire,
    And protest, only a bubble in the molten mass, pops and sighs out,
    and the mass hardens,
    Robinson Jeffers (1887–1962)

    Think of the tools in a tool-box: there is a hammer, pliers, a saw, a screwdriver, a rule, a glue-pot, nails and screws.—The function of words are as diverse as the functions of these objects.
    Ludwig Wittgenstein (1889–1951)