Probability Mass Function

In probability theory and statistics, a probability mass function (pmf) is a function that gives the probability that a discrete random variable is exactly equal to some value. The probability mass function is often the primary means of defining a discrete probability distribution, and such functions exist for either scalar or multivariate random variables, given that the distribution is discrete.

A probability mass function differs from a probability density function (p.d.f.) in that the latter is associated with continuous rather than discrete random variables; the values of the latter are not probabilities as such: a p.d.f. must be integrated over an interval to yield a probability.

Read more about Probability Mass Function:  Formal Definition, Examples

Famous quotes containing the words probability, mass and/or function:

    Only in Britain could it be thought a defect to be “too clever by half.” The probability is that too many people are too stupid by three-quarters.
    John Major (b. 1943)

    Reduced to a miserable mass level, the level of a Hitler, German Romanticism broke out into hysterical barbarism.
    Thomas Mann (1875–1955)

    It is not the function of our Government to keep the citizen from falling into error; it is the function of the citizen to keep the Government from falling into error.
    Robert H. [Houghwout] Jackson (1892–1954)